login
A339405
Number of partitions of n into an odd number of parts that are not multiples of 3.
3
0, 1, 1, 1, 2, 3, 3, 5, 6, 8, 11, 14, 17, 23, 28, 35, 44, 55, 66, 83, 100, 122, 148, 179, 213, 259, 307, 366, 436, 518, 609, 723, 848, 997, 1169, 1369, 1593, 1864, 2163, 2513, 2914, 3376, 3894, 4503, 5182, 5965, 6854, 7869, 9008, 10325, 11794, 13470, 15363, 17509, 19911, 22654, 25713, 29177
OFFSET
0,5
FORMULA
G.f.: (1/2) * (Product_{k>=1} (1 - x^(3*k)) / (1 - x^k) - Product_{k>=1} (1 + x^(3*k)) / (1 + x^k)).
a(n) = (A000726(n) - A109389(n)) / 2.
EXAMPLE
a(7) = 5 because we have [7], [5, 1, 1], [4, 2, 1], [2, 2, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1].
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
b(n, i-1, t)+`if`(irem(i, 3)=0, 0, b(n-i, min(n-i, i), 1-t))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
nmax = 57; CoefficientList[Series[(1/2) (Product[(1 - x^(3 k))/(1 - x^k), {k, 1, nmax}] - Product[(1 + x^(3 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 03 2020
STATUS
approved