login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339402
a(n) = denominator of (1/e)^n * Sum_{k>=0}(n^k*k^n)/(n!*k!).
1
1, 1, 1, 2, 2, 3, 120, 720, 1008, 40320, 362880, 45360, 39916800, 68428800, 6227020800, 87178291200, 1307674368000, 1046139494400, 355687428096000, 376610217984000, 40548366802944000, 2432902008176640000, 5676771352412160000, 40142883134914560000, 25852016738884976640000
OFFSET
0,4
FORMULA
A339401(n)/a(n) = A242817(n)/n!. - Pontus von Brömssen, Dec 03 2020
a(n) = denominator([x^n] exp(n*(exp(x)-1))). - Alois P. Heinz, Dec 07 2020
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, (1+
add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
a:= n-> denom(A(n$2)/n!):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 07 2020
MATHEMATICA
a[n_] := BellB[n, n]/n! // Denominator;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2022 *)
CROSSREFS
Cf. A339401 for numerators and relation to A242817.
Sequence in context: A354743 A246718 A177764 * A027498 A094877 A359354
KEYWORD
nonn,frac
AUTHOR
William C. Laursen, Dec 03 2020
STATUS
approved