

A027586


Sequence satisfies T^2(a)=a, where T is defined below.


0



1, 2, 3, 3, 5, 6, 8, 11, 13, 17, 20, 25, 30, 37, 45, 52, 64, 73, 86, 102, 116, 137, 157, 180, 207, 236, 269, 305, 347, 389, 440, 494, 552, 621, 691, 771, 858, 951, 1054, 1168, 1290, 1422, 1570, 1722, 1893, 2079, 2274, 2494, 2724, 2974, 3244, 3533, 3845, 4181
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.


LINKS

Table of n, a(n) for n=0..53.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226228 (1995), 5772; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]


FORMULA

Define T:a>b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that even parts do not occur more than once.


CROSSREFS

Sequence in context: A061790 A107236 A192184 * A039860 A084338 A300446
Adjacent sequences: A027583 A027584 A027585 * A027587 A027588 A027589


KEYWORD

nonn,eigen


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Sean A. Irvine, Nov 09 2019


STATUS

approved



