login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289352
Irregular triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with floor((n+2)/2) up movements in odd numbered positions and k returns to the x axis.
0
1, 0, 1, 1, 2, 1, 2, 3, 6, 8, 6, 10, 15, 15, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 490, 560, 420, 224, 70, 1176, 1470, 1260, 840, 420, 126, 5292, 5880, 4410, 2520, 1050, 252, 13860, 16632, 13860, 9240, 4950, 1980, 462, 60984, 66528, 49896, 29568, 13860, 4752, 924
OFFSET
1,5
FORMULA
T(1,1)=1, T(2,1)=0, T(2,2)=1, For n >= 3, T(n,k) = (1/floor((n-1)/2))*C(n-1,floor((n-3)/2))*C(n-1-k,floor((n-3)/2))*k (conjectured).
Row sums of T(n,k) = A005558(a(n-1)).
T(n,1) = A001263(T(n-1,floor(n/2)).
T(n,floor((n+2)/2)) = A001405(a(n-1)).
EXAMPLE
n\k 1 2 3 4 5
1 1
2 0 1
3 1 2
4 1 2 3
5 6 8 6
6 10 15 15 10
7 50 60 45 20
8 105 140 126 84 35
9 490 560 420 224 70
T(4,3)=3: (U = up in odd position, u = up in even position, d = down, _ = return to x axis, floor ((n+2)/2) = 3 up movements in odd position) Ud_Ud_Uudd_, Uudd_Ud_Ud_, Ud_Uudd_Ud_.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger Ford, Jul 03 2017
STATUS
approved