login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289349 Coefficients in expansion of E_6^(11/12). 11
1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, for 0 < m < 1, the expansion of (E_6)^m is asymptotic to -m * Gamma(1/4)^(16*m) * 3^(2*m) * exp(2*Pi*n) / (2^(13*m) * Pi^(12*m) * Gamma(1-m) * n^(1+m)). - Vaclav Kotesovec, Mar 05 2018

LINKS

Table of n, a(n) for n=0..12.

FORMULA

G.f.: Product_{n>=1} (1-q^n)^(11*A288851(n)/12).

a(n) ~ c * exp(2*Pi*n) / n^(23/12), where c = -11 * 2^(5/12) * 3^(5/6) * Pi^(11/3) / (128 * Gamma(1/12) * Gamma(3/4)^(44/3)) = -0.08406022472181281739983743854923746657261382508944840919197295490535... - Vaclav Kotesovec, Jul 08 2017

MATHEMATICA

nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

CROSSREFS

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), this sequence (k=11).

Cf. A013973 (E_6), A288851.

Sequence in context: A027823 A194718 A267283 * A023912 A027565 A035847

Adjacent sequences:  A289346 A289347 A289348 * A289350 A289351 A289352

KEYWORD

sign

AUTHOR

Seiichi Manyama, Jul 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 19:54 EST 2021. Contains 349585 sequences. (Running on oeis4.)