login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289349
Coefficients in expansion of E_6^(11/12).
11
1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888
OFFSET
0,2
COMMENTS
In general, for 0 < m < 1, the expansion of (E_6)^m is asymptotic to -m * Gamma(1/4)^(16*m) * 3^(2*m) * exp(2*Pi*n) / (2^(13*m) * Pi^(12*m) * Gamma(1-m) * n^(1+m)). - Vaclav Kotesovec, Mar 05 2018
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(11*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(23/12), where c = -11 * 2^(5/12) * 3^(5/6) * Pi^(11/3) / (128 * Gamma(1/12) * Gamma(3/4)^(44/3)) = -0.08406022472181281739983743854923746657261382508944840919197295490535... - Vaclav Kotesovec, Jul 08 2017
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
CROSSREFS
E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), this sequence (k=11).
Cf. A013973 (E_6), A288851.
Sequence in context: A027823 A194718 A267283 * A023912 A027565 A035847
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 03 2017
STATUS
approved