login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289348
Coefficients in expansion of E_6^(5/6).
11
1, -420, -31500, -4724160, -1314429900, -440028142344, -162555920654400, -63990327056960640, -26341675849615282380, -11210298679649742846180, -4895195936831699458605912, -2181913188022929464292248640
OFFSET
0,2
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(5*A288851(n)/6).
a(n) ~ c * exp(2*Pi*n) / n^(11/6), where c = -5 * 3^(1/6) * Gamma(1/4)^(40/3) / (2048*sqrt(2) * Pi^(19/2) * Gamma(1/3)^2) = -0.1571123439957640423587958439875289712533650298096956968521099309872... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(5/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
CROSSREFS
E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), this sequence (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.
Sequence in context: A133712 A058834 A022046 * A107510 A023911 A135340
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 03 2017
STATUS
approved