|
|
A001373
|
|
Number of functional digraphs (digraphs of functions on n nodes where every node has outdegree 1 and loops of length 1 are forbidden).
(Formerly M1597 N0623)
|
|
13
|
|
|
1, 0, 1, 2, 6, 13, 40, 100, 291, 797, 2273, 6389, 18264, 51916, 148666, 425529, 1221900, 3511507, 10111043, 29142941, 84112009, 243000149, 702758065, 2034150215, 5892907566, 17084615940, 49567063847, 143902155133, 418032946298, 1215076634226, 3533715961160, 10282042126394, 29931877173282, 87173224346464, 253989569994664
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (x/T(x)) / Product_{n>=1} ( 1 - T(x^n) ) where T(x) is the g.f. of A000081, see the Read reference and the PARI code. - Joerg Arndt, Apr 17 2014
|
|
MATHEMATICA
|
Needs["Combinatorica`];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2 k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1, i] i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; c=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 2, 30}]], 1]; CoefficientList[Series[Product[1/(1-x^i)^c[[i]], {i, 1, nn-1}], {x, 0, nn}], x] (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
|
|
PROG
|
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) );
v0000081=concat([0], A); \\ A000081
x='x+O('x^N); T = Ser(v0000081);
gf = x/T / prod(n=1, N, 1 - subst(T, 'x, 'x^n) );
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|