OFFSET
1,2
COMMENTS
Turning over will not create a new bracelet.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
G. Melançon, C. Reutenauer, On a Class of Lyndon Words Extending Christoffel Words and Related to a Multidimensional Continued Fraction Algorithm, J. Int. Seq. 16 (2013) #13.9.7, Corollary 6.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
FORMULA
T(n, k) = Sum_{d|n} mu(n/d) * A081720(d,k) for k<=n. Corrected Jan 22 2022
EXAMPLE
Table starts:
1 2 3 4 5 6 7 8 ...
0 1 3 6 10 15 21 28 ...
0 2 7 16 30 50 77 112 ...
0 3 15 45 105 210 378 630 ...
0 6 36 132 372 882 1848 3528 ...
0 8 79 404 1460 4220 10423 22904 ...
0 16 195 1296 5890 20640 60021 151840 ...
0 24 477 4380 25275 107100 364854 1057392 ...
...
MAPLE
A276550 := proc(n, k)
local d ;
add( numtheory[mobius](n/d)*A081720(d, k), d=numtheory[divisors](n)) ;
end proc:
seq(seq(A276550(n, d-n), n=1..d-1), d=2..10) ; # R. J. Mathar, Jan 22 2022
MATHEMATICA
t[n_, k_] := Sum[EulerPhi[d] k^(n/d), {d, Divisors[n]}]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4;
T[n_, k_] := Sum[MoebiusMu[d] t[n/d, k], {d, Divisors[n]}];
Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 26 2020 *)
CROSSREFS
KEYWORD
AUTHOR
Andrew Howroyd, Apr 09 2017
STATUS
approved