The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032294 Number of aperiodic bracelets (turnover necklaces) with n beads of 3 colors. 1
 3, 3, 7, 15, 36, 79, 195, 477, 1209, 3168, 8415, 22806, 62412, 172887, 481552, 1351485, 3808080, 10780653, 30615351, 87226932, 249144506, 713378655, 2046856563, 5884468110, 16946569332, 48883597728, 141217159239 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS C. G. Bower, Transforms (2) F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] N. J. A. Sloane, Transforms FORMULA MOEBIUS transform of A027671. From Herbert Kociemba, Nov 28 2016: (Start) More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors. gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) MATHEMATICA mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)))/2, {n, mx}]; CoefficientList[Series[gf[x, 3], {x, 0, mx}], x] (* Herbert Kociemba, Nov 28 2016 *) PROG (PARI) a(x, k) = sum(n=1, 40, moebius(n) * (-log(1 - k*x^n )/n + sum(i=0, 2, binomial(k, i) * x^(n*i)) / (1 - k* x^(2*n)))/2); Vec(a(x, 3) + O(x^41)) \\ Indranil Ghosh, Mar 29 2017 CROSSREFS Column 3 of A276550. Sequence in context: A030069 A004043 A104176 * A146034 A032029 A058571 Adjacent sequences:  A032291 A032292 A032293 * A032295 A032296 A032297 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 09:30 EDT 2022. Contains 353908 sequences. (Running on oeis4.)