login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.
0

%I #13 Aug 30 2024 12:13:37

%S 1,2,1,2,3,6,9,18,30,56,98,180,311,546,915,1520,2440,3855,5916,8935,

%T 13178,19138,27264,38303,52950,72311,97419,129839,171066,223260,

%U 288498,369708,469708,592363,741433,921933,1138761,1398343,1706956,2072696,2503513,3009482,3600515,4289032,5087253,6010305,7073122,8293962

%N Number of aperiodic necklaces (Lyndon words) with k<=8 black beads and n-k white beads.

%H <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -4, 1, 4, -1, -5, 2, 7, -1, -6, 0, 4, 0, -6, -1, 7, 2, -5, -1, 4, 1, -4, -2, 3, 1, -1).

%F G.f.: 1 + x + x/(1-x) + 1/2*x^2*(1/(1-x)^2 - 1/(1-x^2)) + 1/3*x^3*(1/(1-x)^3 - 1/(1-x^3)) + 1/4*x^4*(1/(1-x)^4 - 1/(1-x^2)^2) + 1/5*x^5*(1/(1-x)^5 - 1/(1-x^5)) + 1/6*x^6*(1/(1-x)^6 - 1/(1-x^2)^3 - 1/(1-x^3)^2 + 1/(1-x^6)) + 1/7*x^7*(1/(1-x)^7 - 1/(1-x^7)) + 1/8*x^8*(1/(1-x)^8 - 1/(1-x^2)^4).

%t (* The g.f. for the number of aperiodic necklaces (Lyndon words) with k<=m black beads and n-k white beads. Here we have the case m=8 *)

%t gf[x_, m_]:=Sum[x^i/i Plus@@(MoebiusMu[#](1-x^#)^(-(i/#))&/@Divisors[i]), {i, 1, m}]+x+1

%Y Cf. A001037 (k arbitrary), A008747 (k<=3), A277619 (k<=4), A277629 (k<=5), A277631 (k<=6).

%Y The Mathematica section of A032168 gives the g.f. for k=m black beads and n-k white beads.

%K nonn,easy

%O 0,2

%A _Herbert Kociemba_, Oct 24 2016