This site is supported by donations to The OEIS Foundation.
User:Travis Hoppe
From OeisWiki
Homepage: http://thoppe.github.io/
Twitter: https://twitter.com/metasemantic
Ph.D. Physics, previously working as a post-doc at the NIH, now at CDC. In collaboration with User:Anna Petrone, we have produced an Encyclopedia of Finite Graphs. This Encyclopedia serves as a database of graphs, their invariants and the code needed to reproduce the graphs. In the interests of the OEIS, we have added novel integer sequences from the graph database and extended a few popular ones.
Contents
Encyclopedia of Finite Graphs
The Encyclopedia has only been computed for simple connected graphs. We plan to extend this in the future. Please leave any suggestions as an issue on the project page of the Encyclopedia.
- Integer sequence discovery from small graphs (arVix writeup)
- Encyclopedia of Finite Graphs (code)
- Simple Connected Graph Invariants (database)
Extensions
- A086216 : vertex_connectivity>3
- A086217 : vertex_connectivity>4
- A079574 : is_subgraph_free_K4=1
- A088741 : is_strongly_regular=1
- A052446 : edge_connectivity=1
- A052447 : edge_connectivity=2
- A052448 : edge_connectivity=3
Corrections
- A126149 : is_hamiltonian=0
Distinct sequences
- A245881 : Tutte polynomial
- A245883 : chromatic polynomial
- A245880 : characteristic polynomial
- A245882 : Laplacian polynomial
- A245879 : fractional chromatic number
Primary sequences
- A241454 : automorphism_group_n=2
- A241455 : automorphism_group_n=4
- A241456 : automorphism_group_n=6
- A241457 : automorphism_group_n=8
- A241458 : automorphism_group_n=10
- A241459 : automorphism_group_n=12
- A241460 : automorphism_group_n=14
- A241461 : automorphism_group_n=16
- A241462 : automorphism_group_n=20
- A241463 : automorphism_group_n=24
- A241464 : automorphism_group_n=36
- A241465 : automorphism_group_n=48
- A241466 : automorphism_group_n=72
- A241467 : automorphism_group_n=120
- A241468 : automorphism_group_n=144
- A241469 : automorphism_group_n=240
- A241470 : automorphism_group_n=720
- A241471 : automorphism_group_n=5040
- A241702 : chromatic_number=7
- A241703 : edge_connectivity=4
- A241704 : edge_connectivity=5
- A241705 : edge_connectivity=6
- A241706 : diameter=2
- A241707 : diameter=3
- A241708 : diameter=4
- A241709 : diameter=5
- A241710 : diameter=6
- A241711 : girth=3
- A241712 : girth=4
- A241713 : girth=5
- A241714 : girth=6
- A241715 : girth=7
- A241767 : n_articulation_points=1
- A241768 : n_articulation_points=2
- A241769 : n_articulation_points=3
- A241770 : n_articulation_points=4
- A241771 : n_articulation_points=5
- A241782 : is_subgraph_free_K5=1
- A241784 : is_subgraph_free_C5=1
- A241814 : is_distance_regular=1
- A241839 : is_k_regular=0
- A241840 : is_distance_regular=0
- A241841 : is_tree=0
- A241842 : is_integral=0
- A241843 : is_chordal=0
- A242790 : is_subgraph_free_diamond=1
- A242792 : is_subgraph_free_bowtie=1
- A242791 : is_subgraph_free_open_bowtie=1
- A242952 : is_real_spectrum=1
- A242953 : is_real_spectrum=0
- A243241 : is_strongly_regular=0
- A243242 : is_subgraph_free_K5=0
- A243243 : is_subgraph_free_C4=0
- A243244 : is_subgraph_free_K4=0
- A243245 : is_subgraph_free_K3=0
- A243246 : is_subgraph_free_C5=0
- A243247 : is_subgraph_free_open_bowtie=0
- A243248 : is_subgraph_free_bull=0
- A243249 : is_subgraph_free_bowtie=0
- A243250 : is_subgraph_free_diamond=0
- A244427 : is_subgraph_free_bull=1
- A243251 : has_fractional_duality_gap_vertex_chromatic=1
- A243252 : has_fractional_duality_gap_vertex_chromatic=0
- A243781 : maximal_independent_vertex_set=2
- A243782 : maximal_independent_vertex_set=3
- A243783 : maximal_independent_vertex_set=4
- A243784 : maximal_independent_vertex_set=5
- A243800 : maximal_independent_edge_set=2
- A243801 : maximal_independent_edge_set=3
Secondary sequences
- A243270 : is_hamiltonian=1 and is_bipartite=1
- A243271 : is_hamiltonian=1 and is_distance_regular=1
- A243272 : is_hamiltonian=1 and is_eulerian=1
- A243273 : is_hamiltonian=1 and is_integral=0
- A243274 : is_hamiltonian=1 and is_integral=1
- A243275 : is_hamiltonian=1 and is_subgraph_free_K3=1
- A243276 : is_hamiltonian=1 and is_subgraph_free_K4=1
- A243319 : is_bipartite=1 and is_distance_regular=1
- A243320 : is_bipartite=1 and is_eulerian=1
- A243321 : is_bipartite=1 and is_planar=1
- A243322 : is_distance_regular=1 and is_eulerian=1
- A243323 : is_integral=0 and is_bipartite=1
- A243324 : is_integral=0 and is_eulerian=1
- A243325 : is_integral=0 and is_planar=1
- A243326 : is_integral=0 and is_subgraph_free_K3=1
- A243327 : is_integral=0 and is_subgraph_free_K4=1
- A243328 : is_integral=1 and is_bipartite=1
- A243329 : is_integral=1 and is_distance_regular=1
- A243330 : is_integral=1 and is_eulerian=1
- A243331 : is_integral=1 and is_planar=1
- A243332 : is_integral=1 and is_subgraph_free_K3=1
- A243333 : is_integral=1 and is_subgraph_free_K4=1
- A243334 : is_subgraph_free_K3=1 and is_distance_regular=1
- A243335 : is_subgraph_free_K3=1 and is_eulerian=1
- A243336 : is_subgraph_free_K4=1 and is_eulerian=1
- A243337 : is_subgraph_free_K4=1 and is_planar=1
- A243338 : is_tree=1 and is_integral=0
- A243339 : is_subgraph_free_K4=1 and is_distance_regular=1
- A243545 : is_hamiltonian=1 and is_subgraph_free_bowtie=1
- A243546 : is_subgraph_free_bowtie=1 and is_distance_regular=1
- A243547 : is_subgraph_free_bowtie=1 and is_eulerian=1
- A243548 : is_subgraph_free_bowtie=1 and is_integral=1
- A243549 : is_subgraph_free_bowtie=1 and is_integral=0
- A243550 : is_subgraph_free_bowtie=1 and is_planar=1
- A243551 : is_subgraph_free_bowtie=1 and is_subgraph_free_K4=1
- A243552 : is_subgraph_free_bowtie=1 and is_subgraph_free_bull=1
- A243553 : is_hamiltonian=1 and is_subgraph_free_bull=1
- A243554 : is_subgraph_free_bull=1 and is_distance_regular=1
- A243555 : is_subgraph_free_bull=1 and is_eulerian=1
- A243556 : is_subgraph_free_bull=1 and is_integral=1
- A243557 : is_subgraph_free_bull=1 and is_integral=0
- A243558 : is_subgraph_free_bull=1 and is_planar=1
- A243559 : is_subgraph_free_bull=1 and is_subgraph_free_K4=1
- A243560 : is_hamiltonian=1 and is_subgraph_free_diamond=1
- A243561 : is_subgraph_free_diamond=1 and is_distance_regular=1
- A243562 : is_subgraph_free_diamond=1 and is_eulerian=1
- A243563 : is_subgraph_free_diamond=1 and is_integral=0
- A243564 : is_subgraph_free_diamond=1 and is_integral=1
- A243565 : is_subgraph_free_diamond=1 and is_planar=1
- A243566 : is_subgraph_free_diamond=1 and is_subgraph_free_K4=1
- A243567 : is_subgraph_free_diamond=1 and is_subgraph_free_bowtie=1
- A243568 : is_subgraph_free_diamond=1 and is_subgraph_free_bull=1
- A243789 : is_subgraph_free_open_bowtie=1 and is_subgraph_free_diamond=1
- A243790 : is_subgraph_free_open_bowtie=1 and is_hamiltonian=1
- A243791 : is_subgraph_free_open_bowtie=1 and is_eulerian=1
- A243792 : is_subgraph_free_open_bowtie=1 and is_integral=1
- A243783 : is_subgraph_free_open_bowtie=1 and is_integral=0
- A243794 : is_subgraph_free_open_bowtie=1 and is_planar=1
- A243795 : is_subgraph_free_open_bowtie=1 and is_subgraph_free_bull=1
- A243253 : is_chordal=1 and is_eulerian=1
- A243785 : is_chordal=1 and is_integral=0
- A243786 : is_chordal=1 and is_integral=1
- A243787 : is_chordal=1 and is_planar=1
- A243788 : is_chordal=1 and is_subgraph_free_K4=1
- A243796 : is_hamiltonian=1 and is_chordal=1
- A243797 : is_subgraph_free_bowtie=1 and is_chordal=1
- A243798 : is_subgraph_free_bull=1 and is_chordal=1
- A243799 : is_subgraph_free_open_bowtie=1 and is_chordal=1
Additional sequences
- A355616 : Number of distinct lengths between consecutive points of the Farey sequence of order n