login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243243
Number of unlabeled, connected graphs on n vertices with at least one subgraph isomorphic to a C_4, where C_4 is the cycle graph on four vertices.
1
0, 0, 0, 3, 13, 93, 796, 10931, 260340, 11713182, 1006682063, 164059710255, 50335906936959, 29003487454251217, 31397381142667479256, 63969560113223974443840, 245871831682084008526845525, 1787331725248899088577102145274, 24636021429399867655316345340289103
OFFSET
1,4
LINKS
Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Square-Free Graph
FORMULA
a(n) = A001349(n) - A077269(n).
MATHEMATICA
terms = 19;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
A001349 = EULERi[Array[a88, terms]];
A006786 = {1, 2, 4, 8, 18, 44, 117, 351, 1230, 5069, 25181, 152045, 1116403, 9899865, 104980369, 1318017549, 19427531763, 333964672216, 6660282066936};
A077269 = EULERi[A006786];
CROSSREFS
Sequence in context: A034513 A257661 A292501 * A274052 A305207 A369197
KEYWORD
nonn
AUTHOR
Travis Hoppe and Anna Petrone, Jun 01 2014
EXTENSIONS
a(11)-a(17) using formula from Falk Hüffner, Jan 15 2016
a(18)-a(19) from Jean-François Alcover, Feb 15 2019 using Andrew Howroyd's code.
STATUS
approved