login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322062 Sums of pairs of consecutive terms of Pascal's triangle read by row. 0
2, 2, 2, 3, 3, 2, 4, 6, 4, 2, 5, 10, 10, 5, 2, 6, 15, 20, 15, 6, 2, 7, 21, 35, 35, 21, 7, 2, 8, 28, 56, 70, 56, 28, 8, 2, 9, 36, 84, 126, 126, 84, 36, 9, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sums of pairs of adjacent terms of A007318. - N. J. A. Sloane, Jan 27 2019

LINKS

Table of n, a(n) for n=0..77.

FORMULA

T(n, k) = if (k<n, binomial(n, k) + binomial(n, k+1), binomial(n, k) + binomial(n+1, 0)). - Michel Marcus, Nov 25 2018

EXAMPLE

The 8th term is 6 because it is the sum of the 8th and 9th terms of Pascal's triangle read by row (3 + 3).

Triangle begins:

  2;

  2,  2;

  3,  3,  2;

  4,  6,  4,  2;

  5, 10, 10,  5,  2;

  ...

MATHEMATICA

v = Flatten[Table[Binomial[n, k], {n, 0, 10}, {k, 0, n}]]; Most[v] + Rest[v] (* Amiram Eldar, Nov 25 2018 *)

PROG

(PARI) T(n, k) = if (k<n, binomial(n, k) + binomial(n, k+1), binomial(n, k) + binomial(n+1, 0));

tabl(nn) = for (n=0, nn, for(k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 25 2018

CROSSREFS

Cf. A007318, A168557.

Sequence in context: A194340 A194288 A194332 * A071451 A177868 A178701

Adjacent sequences:  A322059 A322060 A322061 * A322063 A322064 A322065

KEYWORD

nonn,tabl,easy

AUTHOR

Kei Ryan, Nov 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 11:38 EDT 2019. Contains 328296 sequences. (Running on oeis4.)