login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215043
a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).
2
0, 2, 276, 34561, 4261992, 524393210, 64499742738, 7933009283134, 975696814205904, 120002796170968643, 14759368609635548580, 1815282342961539780022, 223264968937188026209956, 27459775899111901985784506
OFFSET
0,2
COMMENTS
24*a(n) is the third example for the Riordan transition matrix introduced in a comment on A078812 (with offset [0,0]). Take there l -> n, n -> 2. See the second formula below.
LINKS
Index entries for linear recurrences with constant coefficients, signature (144,-2640,6930,-2640,144,-1).
FORMULA
a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).
a(n) = 3*F(2*n) + 20*F(2*n)^3 + 25*F(2*n)^5, n >= 0 (see the comment above).
O.g.f.: x*(2 - 12*x + 97*x^2 - 12*x^3 + 2*x^4)/((1 - 3*x + x^2)*(1 - 18*x + x^2)*(1 - 123*x + x^2)). From the o.g.f.s for the sequences appearing in the preceding formula, see A001906, A215039 and A215044.
a(n) = (L(8*n) + 1)*F(2*n)/24. - Ehren Metcalfe, Jun 04 2019
MATHEMATICA
Table[Fibonacci[12*n]/(24*LucasL[2*n]), {n, 0, 15}] (* G. C. Greubel, Jun 30 2019 *)
PROG
(Magma) [Fibonacci(12*n)/(24*Lucas(2*n)): n in [0..15]]; // Vincenzo Librandi, Sep 02 2012
(PARI) lucas(n) = fibonacci(n+1) + fibonacci(n-1);
vector(15, n, n--; fibonacci(12*n)/(24*lucas(2*n))) \\ G. C. Greubel, Jun 30 2019
(Sage) [fibonacci(12*n)/(24*lucas_number2(2*n, 1, -1)) for n in (0..15)] # G. C. Greubel, Jun 30 2019
CROSSREFS
Cf. A215042 (for F(8*n)/L(2*n)).
Sequence in context: A237993 A174710 A200168 * A119553 A093938 A172374
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2012
STATUS
approved