login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215046
Increasingly ordered list of those values m for which the degree of the minimal polynomial of 2*cos(Pi/m) (see A187360) is prime.
0
4, 5, 6, 7, 9, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459
OFFSET
1,1
COMMENTS
The degree delta(m) of the minimal polynomial of rho(m) := 2*cos(Pi/m), called C(m,x) with coefficient array A187360, is given by A055034(m).
If delta(m) = phi(2*m)/2, m>=2, delta(1) = 1, with phi = A000010, is prime then the (Abelian) Galois group G(Q(rho(m))/Q) is cyclic. Because this Galois group of C(m,x) has order delta(m) this follows from a corollary to Lagrange's theorem, or also from Cauchy's theorem on groups.
Because the mentioned Galois group is isomorphic to the multiplicative group Modd m of order delta(m) (see a comment on A203571) all m = a(n) values appear in A206551.
This sequence is also a subsequence of A210845 because p is squarefree (see A005117).
FORMULA
phi(2*m)/2 is prime iff m=a(n), n>=1, with phi = A000010 (Euler's totient).
EXAMPLE
a(4) = 7, because 7 satisfies phi(14)/2 = phi(2*7)/2 = 1*6/2 = 3, which is prime; and 7 is the fourth smallest number m satisfying: phi(2*m)/2 is prime.
CROSSREFS
Cf. A055034.
Sequence in context: A010381 A095033 A010399 * A008523 A047568 A139453
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Sep 03 2012
STATUS
approved