login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).
2

%I #29 Oct 01 2024 15:44:52

%S 0,2,276,34561,4261992,524393210,64499742738,7933009283134,

%T 975696814205904,120002796170968643,14759368609635548580,

%U 1815282342961539780022,223264968937188026209956,27459775899111901985784506

%N a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).

%C 24*a(n) is the third example for the Riordan transition matrix introduced in a comment on A078812 (with offset [0,0]). Take there l -> n, n -> 2. See the second formula below.

%H Vincenzo Librandi, <a href="/A215043/b215043.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (144,-2640,6930,-2640,144,-1).

%F a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).

%F a(n) = 3*F(2*n) + 20*F(2*n)^3 + 25*F(2*n)^5, n >= 0 (see the comment above).

%F O.g.f.: x*(2 - 12*x + 97*x^2 - 12*x^3 + 2*x^4)/((1 - 3*x + x^2)*(1 - 18*x + x^2)*(1 - 123*x + x^2)). From the o.g.f.s for the sequences appearing in the preceding formula, see A001906, A215039 and A215044.

%F a(n) = (L(8*n) + 1)*F(2*n)/24. - _Ehren Metcalfe_, Jun 04 2019

%t Table[Fibonacci[12*n]/(24*LucasL[2*n]), {n,0,15}] (* _G. C. Greubel_, Jun 30 2019 *)

%o (Magma) [Fibonacci(12*n)/(24*Lucas(2*n)): n in [0..15]]; // _Vincenzo Librandi_, Sep 02 2012

%o (PARI) lucas(n) = fibonacci(n+1) + fibonacci(n-1);

%o vector(15, n, n--; fibonacci(12*n)/(24*lucas(2*n))) \\ _G. C. Greubel_, Jun 30 2019

%o (Sage) [fibonacci(12*n)/(24*lucas_number2(2*n,1,-1)) for n in (0..15)] # _G. C. Greubel_, Jun 30 2019

%Y Cf. A215042 (for F(8*n)/L(2*n)).

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 31 2012