The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244088 Decimal expansion of 1/2+2/sqrt(13), a constant related to the asymptotic evaluation of the number of self-avoiding rook paths joining opposite corners on a 3 X n chessboard. 1
 1, 0, 5, 4, 7, 0, 0, 1, 9, 6, 2, 2, 5, 2, 2, 9, 1, 2, 2, 0, 1, 8, 3, 4, 1, 7, 3, 3, 4, 5, 6, 9, 9, 9, 3, 7, 6, 3, 4, 6, 3, 5, 3, 3, 1, 9, 0, 5, 3, 1, 1, 4, 8, 0, 1, 9, 5, 5, 4, 5, 4, 3, 1, 6, 3, 4, 2, 6, 4, 1, 0, 6, 8, 9, 6, 8, 1, 5, 5, 4, 5, 3, 1, 0, 8, 4, 0, 2, 9, 3, 5, 6, 9, 5, 1, 5, 2, 4, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.10.2 Rook paths on a chessboard, p. 334. LINKS FORMULA Asymptotic number of paths = p(k) ~ (1/2+2/sqrt(13)) * sqrt((3+sqrt(13))/2)^(2k), where k = n-1. EXAMPLE 1.054700196225229122018341733456999376346353319... MATHEMATICA RealDigits[1/2 + 2/Sqrt[13], 10, 100] // First CROSSREFS Cf. A006192, A007764, A007786, A007787, A244089. Sequence in context: A234745 A019124 A019323 * A020832 A246724 A199276 Adjacent sequences:  A244085 A244086 A244087 * A244089 A244090 A244091 KEYWORD nonn,cons,walk AUTHOR Jean-François Alcover, Jun 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 06:10 EDT 2022. Contains 356216 sequences. (Running on oeis4.)