The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n. 10
 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself. LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n). A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019 EXAMPLE Array begins:        k=0:   k=1:   k=2:   k=3:   k=4:   k=5:   n=0:  1      1      1      1      1      1   n=1:  1      1      1      1      1      1   n=2:  1      2      3      4      5      6   n=3:  1      3      6     10     15     21   n=4:  1      5     15     34     65    111   n=5:  1      7     28     80    185    371   n=6:  1     11     66    254    739   1785   n=7:  1     15    122    604   2163   6223   n=8:  1     22    266   1785   8120  28413   n=9:  1     30    503   4370  24446 101534 The A(4,2) = 15 twice-partitions:   (4)  (31)    (22)    (211)      (1111)        (3)(1)  (2)(2)  (11)(2)    (11)(11)                        (2)(11)    (111)(1)                        (21)(1)    (11)(1)(1)                        (2)(1)(1)  (1)(1)(1)(1) MAPLE b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,       1, b(n, i-1, k)+b(i\$2, k-1)*b(n-i, min(n-i, i), k))     end: A:= (n, k)-> b(n\$2, k): seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019 MATHEMATICA ptnlev[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Tuples[ptnlev[#, k-1]&/@ptn], {ptn, IntegerPartitions[n]}]]; Table[Length[ptnlev[sum-k, k]], {sum, 0, 12}, {k, 0, sum}] CROSSREFS Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3). Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4). Main diagonal gives A306187. Cf. A001970, A055884, A096751, A144150, A196545, A281113, A289501, A290353, A300383, A323719, A327618, A327639. Sequence in context: A133815 A305027 A335570 * A130580 A220708 A110541 Adjacent sequences:  A323715 A323716 A323717 * A323719 A323720 A323721 KEYWORD nonn,tabl AUTHOR Gus Wiseman, Jan 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 08:34 EDT 2021. Contains 343064 sequences. (Running on oeis4.)