Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 May 14 2021 08:21:18
%S 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,5,6,4,1,1,1,7,15,10,5,1,1,1,11,28,34,
%T 15,6,1,1,1,15,66,80,65,21,7,1,1,1,22,122,254,185,111,28,8,1,1,1,30,
%U 266,604,739,371,175,36,9,1,1,1,42,503,1785,2163,1785,672,260,45,10,1,1
%N Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.
%C A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.
%H Alois P. Heinz, <a href="/A323718/b323718.txt">Rows n = 0..140, flattened</a>
%F Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
%F A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - _Alois P. Heinz_, Sep 20 2019
%e Array begins:
%e k=0: k=1: k=2: k=3: k=4: k=5:
%e n=0: 1 1 1 1 1 1
%e n=1: 1 1 1 1 1 1
%e n=2: 1 2 3 4 5 6
%e n=3: 1 3 6 10 15 21
%e n=4: 1 5 15 34 65 111
%e n=5: 1 7 28 80 185 371
%e n=6: 1 11 66 254 739 1785
%e n=7: 1 15 122 604 2163 6223
%e n=8: 1 22 266 1785 8120 28413
%e n=9: 1 30 503 4370 24446 101534
%e The A(4,2) = 15 twice-partitions:
%e (4) (31) (22) (211) (1111)
%e (3)(1) (2)(2) (11)(2) (11)(11)
%e (2)(11) (111)(1)
%e (21)(1) (11)(1)(1)
%e (2)(1)(1) (1)(1)(1)(1)
%p b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
%p 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
%p end:
%p A:= (n, k)-> b(n$2, k):
%p seq(seq(A(d-k, k), k=0..d), d=0..14); # _Alois P. Heinz_, Jan 25 2019
%t ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
%t Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
%t (* Second program: *)
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
%t b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
%t A[n_, k_] := b[n, n, k];
%t Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, May 13 2021, after _Alois P. Heinz_ *)
%Y Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
%Y Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
%Y Main diagonal gives A306187.
%Y Cf. A001970, A055884, A096751, A144150, A196545, A281113, A289501, A290353, A300383, A323719, A327618, A327639.
%K nonn,tabl
%O 0,8
%A _Gus Wiseman_, Jan 25 2019