login
Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.
10

%I #31 May 14 2021 08:21:18

%S 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,5,6,4,1,1,1,7,15,10,5,1,1,1,11,28,34,

%T 15,6,1,1,1,15,66,80,65,21,7,1,1,1,22,122,254,185,111,28,8,1,1,1,30,

%U 266,604,739,371,175,36,9,1,1,1,42,503,1785,2163,1785,672,260,45,10,1,1

%N Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

%C A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

%H Alois P. Heinz, <a href="/A323718/b323718.txt">Rows n = 0..140, flattened</a>

%F Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).

%F A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - _Alois P. Heinz_, Sep 20 2019

%e Array begins:

%e k=0: k=1: k=2: k=3: k=4: k=5:

%e n=0: 1 1 1 1 1 1

%e n=1: 1 1 1 1 1 1

%e n=2: 1 2 3 4 5 6

%e n=3: 1 3 6 10 15 21

%e n=4: 1 5 15 34 65 111

%e n=5: 1 7 28 80 185 371

%e n=6: 1 11 66 254 739 1785

%e n=7: 1 15 122 604 2163 6223

%e n=8: 1 22 266 1785 8120 28413

%e n=9: 1 30 503 4370 24446 101534

%e The A(4,2) = 15 twice-partitions:

%e (4) (31) (22) (211) (1111)

%e (3)(1) (2)(2) (11)(2) (11)(11)

%e (2)(11) (111)(1)

%e (21)(1) (11)(1)(1)

%e (2)(1)(1) (1)(1)(1)(1)

%p b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,

%p 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))

%p end:

%p A:= (n, k)-> b(n$2, k):

%p seq(seq(A(d-k, k), k=0..d), d=0..14); # _Alois P. Heinz_, Jan 25 2019

%t ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];

%t Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]

%t (* Second program: *)

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,

%t b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];

%t A[n_, k_] := b[n, n, k];

%t Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, May 13 2021, after _Alois P. Heinz_ *)

%Y Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).

%Y Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).

%Y Main diagonal gives A306187.

%Y Cf. A001970, A055884, A096751, A144150, A196545, A281113, A289501, A290353, A300383, A323719, A327618, A327639.

%K nonn,tabl

%O 0,8

%A _Gus Wiseman_, Jan 25 2019