OFFSET
0,3
COMMENTS
In general, "number of partitions of j*n^3 into parts that are at most n" is (for j>0) asymptotic to exp(2*n + 1/(4*j)) * n^(n-3) * j^(n-1) / (2*Pi). - Vaclav Kotesovec, May 25 2015
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..122 (terms 0..70 from Alois P. Heinz)
FORMULA
a(n) = [x^(n^3)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n + 1/4) * n^(n-3) / (2*Pi). - Vaclav Kotesovec, May 25 2015
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n^3, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
MATHEMATICA
a[n_] := SeriesCoefficient[1/QPochhammer[q, q, n], {q, 0, n^3}]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 03 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 01 2014
STATUS
approved