login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238608 Number of partitions of n^3 into parts that are at most n. 12
1, 1, 5, 75, 2280, 106852, 6889527, 569704489, 57733506640, 6944433285769, 968356321790171, 153738253618009045, 27396489338187214000, 5417302365503826145732, 1177436831956414016252071, 279074576444362385794783853, 71649589941044468875380333533 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general, "number of partitions of j*n^3 into parts that are at most n" is (for j>0) asymptotic to exp(2*n + 1/(4*j)) * n^(n-3) * j^(n-1) / (2*Pi). - Vaclav Kotesovec, May 25 2015

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..122 (terms 0..70 from Alois P. Heinz)

FORMULA

a(n) = [x^(n^3)] Product_{j=1..n} 1/(1-x^j).

a(n) ~ exp(2*n + 1/4) * n^(n-3) / (2*Pi). - Vaclav Kotesovec, May 25 2015

MAPLE

T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n^3, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz

MATHEMATICA

a[n_] := SeriesCoefficient[1/QPochhammer[q, q, n], {q, 0, n^3}]; Table[ a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Dec 03 2015 *)

CROSSREFS

Column k=3 of A238016.

Cf. A258302 (j=2), A258303 (j=3), A258304 (j=4), A258305 (j=5).

Sequence in context: A219462 A091882 A034688 * A132855 A238560 A303125

Adjacent sequences:  A238605 A238606 A238607 * A238609 A238610 A238611

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 04:46 EDT 2019. Contains 328145 sequences. (Running on oeis4.)