The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238608 Number of partitions of n^3 into parts that are at most n. 13
 1, 1, 5, 75, 2280, 106852, 6889527, 569704489, 57733506640, 6944433285769, 968356321790171, 153738253618009045, 27396489338187214000, 5417302365503826145732, 1177436831956414016252071, 279074576444362385794783853, 71649589941044468875380333533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, "number of partitions of j*n^3 into parts that are at most n" is (for j>0) asymptotic to exp(2*n + 1/(4*j)) * n^(n-3) * j^(n-1) / (2*Pi). - Vaclav Kotesovec, May 25 2015 LINKS Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..122 (terms 0..70 from Alois P. Heinz) FORMULA a(n) = [x^(n^3)] Product_{j=1..n} 1/(1-x^j). a(n) ~ exp(2*n + 1/4) * n^(n-3) / (2*Pi). - Vaclav Kotesovec, May 25 2015 MAPLE T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 01:10 EST 2024. Contains 370265 sequences. (Running on oeis4.)