login
A238608
Number of partitions of n^3 into parts that are at most n.
13
1, 1, 5, 75, 2280, 106852, 6889527, 569704489, 57733506640, 6944433285769, 968356321790171, 153738253618009045, 27396489338187214000, 5417302365503826145732, 1177436831956414016252071, 279074576444362385794783853, 71649589941044468875380333533
OFFSET
0,3
COMMENTS
In general, "number of partitions of j*n^3 into parts that are at most n" is (for j>0) asymptotic to exp(2*n + 1/(4*j)) * n^(n-3) * j^(n-1) / (2*Pi). - Vaclav Kotesovec, May 25 2015
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..122 (terms 0..70 from Alois P. Heinz)
FORMULA
a(n) = [x^(n^3)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n + 1/4) * n^(n-3) / (2*Pi). - Vaclav Kotesovec, May 25 2015
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n^3, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
MATHEMATICA
a[n_] := SeriesCoefficient[1/QPochhammer[q, q, n], {q, 0, n^3}]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 03 2015 *)
CROSSREFS
Column k=3 of A238016.
Cf. A258302 (j=2), A258303 (j=3), A258304 (j=4), A258305 (j=5).
Sequence in context: A219462 A091882 A034688 * A132855 A238560 A303125
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 01 2014
STATUS
approved