|
|
A258305
|
|
Number of partitions of 5*n^3 into parts that are at most n.
|
|
5
|
|
|
1, 1, 21, 1587, 238383, 55567352, 17847892852, 7361757422695, 3723968532118769, 2236948326023829383, 1558198571940473783110, 1236019919143994867274825, 1100668944858994534988670451, 1087699749857592852109688615310, 1181577954513871365541825872100466
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..90
|
|
FORMULA
|
a(n) ~ exp(2*n + 1/20) * 5^(n-1) * n^(n-3) / (2*Pi).
|
|
MAPLE
|
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(5*n^3, n), n=0..20);
|
|
CROSSREFS
|
Cf. A238608, A258302, A258303, A258304.
Sequence in context: A301432 A220561 A239267 * A081786 A295414 A202800
Adjacent sequences: A258302 A258303 A258304 * A258306 A258307 A258308
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, May 25 2015
|
|
STATUS
|
approved
|
|
|
|