The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258306 A(n,k) is the sum over all Motzkin paths of length n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals. 6
 1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 7, 14, 1, 1, 5, 9, 23, 43, 1, 1, 6, 11, 34, 71, 141, 1, 1, 7, 13, 47, 105, 255, 490, 1, 1, 8, 15, 62, 145, 411, 911, 1785, 1, 1, 9, 17, 79, 191, 615, 1496, 3535, 6789, 1, 1, 10, 19, 98, 243, 873, 2269, 6169, 13903, 26809 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened Wikipedia, Motzkin number FORMULA A(n,k) = Sum_{i=0..min(floor(n/2),k)} C(k,i) * i! * A258307(n,i). EXAMPLE Square array A(n,k) begins: :   1,   1,   1,   1,   1,    1,    1, ... :   1,   1,   1,   1,   1,    1,    1, ... :   2,   3,   4,   5,   6,    7,    8, ... :   5,   7,   9,  11,  13,   15,   17, ... :  14,  23,  34,  47,  62,   79,   98, ... :  43,  71, 105, 145, 191,  243,  301, ... : 141, 255, 411, 615, 873, 1191, 1575, ... MAPLE b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,       `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)                   +b(x-1, y, false, k) +b(x-1, y+1, true, k)))     end: A:= (n, k)-> b(n, 0, false, k): seq(seq(A(n, d-n), n=0..d), d=0..12); MATHEMATICA b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] :=   b[n, 0, False, k]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *) CROSSREFS Columns k=0-1 give: A258312, A140456(n+2). Main diagonal gives A266386. Cf. A258307, A258309. Sequence in context: A153899 A068098 A135722 * A049513 A121207 A097084 Adjacent sequences:  A258303 A258304 A258305 * A258307 A258308 A258309 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, May 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 17:43 EDT 2021. Contains 346488 sequences. (Running on oeis4.)