login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303125
Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).
4
1, 5, 75, 4500, 43125, 2765000, 55871875, 1876671875, 25128437500, 1495793359375, 28953471875000, 871257974609375, 18280647500000000, 596362168603515625, 14502797130615234375, 519397373566650390625, 8604439235863037109375
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/5, g(n) = -25^n.
LINKS
FORMULA
a(n) ~ 5^(2*n - 1/4) * exp(Pi*sqrt(n/15)) / (2^(8/5) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018
MATHEMATICA
CoefficientList[Series[(QPochhammer[-1, 25*x]/2)^(1/5), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(25*x)^k)^(1/5)))
CROSSREFS
Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), A303124 (b=4), this sequence (b=5).
Sequence in context: A238608 A132855 A238560 * A332714 A258784 A051481
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 19 2018
STATUS
approved