The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238017 Least triangular number representable as a sum of n consecutive triangular numbers, or -1 if no such triangular number exists. 1
 0, 1, 10, 10, 55, -1, 210, 120, 120, 1485, 2145, -1, 2080, -1, -1, 56616, 1326, 12561, -1, 1540, 1540, 21736, -1, -1, 52650, 16653, 4950, 26796, 10440, 12880, 7750, -1, -1, 7140, 7140, 154290, -1, 11476, -1, 214840, -1, -1, 207690, 23252790, -1, -1, 6895041, -1, 750925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS EXAMPLE a(5) = 55 because 55 is the least triangular number representable as a sum of five consecutive triangular numbers: 55 = 3 + 6 + 10 + 15 + 21. a(7) = 210 because 210 is the least triangular number representable as a sum of seven consecutive triangular numbers: 210 = 10 + 15 + 21 + 28 + 36 + 45 + 55. 10 appears twice because 10 = 1 + 3 + 6 and 10 = 0 + 1 + 3 + 6. MATHEMATICA a = 0; a[n_] := Block[{t, x, y, s = Reduce[n*(-1+3*t^2+3*t*n+n^2)/6 == x*(x+1)/2 && x>0 && t >= 0, {t, x}, Integers]}, If[s === False, -1, y = Min[x /. List @ ToRules @ Expand[s /. C -> 1]]; y*(y+1)/2]]; Array[a, 49] (* Giovanni Resta, Mar 02 2014 *) CROSSREFS Cf. A000217, A129803, A131557, A238018. Sequence in context: A003875 A341836 A328530 * A111220 A341253 A106789 Adjacent sequences:  A238014 A238015 A238016 * A238018 A238019 A238020 KEYWORD sign AUTHOR Alex Ratushnyak, Feb 17 2014 EXTENSIONS a(6) and a(12)-a(49) from Jon E. Schoenfield and Giovanni Resta, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 02:16 EDT 2021. Contains 346367 sequences. (Running on oeis4.)