login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129803
Triangular numbers that are the sum of three consecutive triangular numbers.
19
10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
OFFSET
1,1
COMMENTS
Indices m: 4, 16, 61, 229, 856, 3196, 11929, with recurrence m(i) = 5(m(i-1) - m(i-2)) + m(i-3) (see A133161).
If first term is omitted, same sequence as A128862. - R. J. Mathar, Jun 13 2008
FORMULA
a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k).
From Richard Choulet, Oct 06 2007: (Start)
a(n+2) = 14*a(n+1) - a(n) - 3.
a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15).
G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - Colin Barker, Mar 05 2016
EXAMPLE
With tr(k) = k(k+1)/2 = A000217(k):
10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6,
136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55,
1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666,
26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911,
366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760.
MATHEMATICA
LinearRecurrence[{15, -15, 1}, {10, 136, 1891}, 20] (* Harvey P. Dale, Oct 31 2024 *)
PROG
(PARI) Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ Michel Marcus, Sep 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, May 18 2007
STATUS
approved