

A129805


Primes congruent to +1 mod 18.


12



17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 181, 197, 199, 233, 251, 269, 271, 307, 359, 379, 397, 431, 433, 449, 467, 487, 503, 521, 523, 541, 557, 577, 593, 613, 631, 647, 683, 701, 719, 739, 757, 773, 809, 811, 827, 829, 863, 881, 883, 919, 937, 953, 971, 991
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From Katherine Stange (stange(AT)pims.math.ca), Feb 03 2010: (Start)
Equivalently, primes p such that the smallest extension of F_p containing the cube roots of unity also contains the 9th roots of unity.
Equivalently, the primes p for which, if p^t = 1 mod 3, then p^t = 1 mod 9.
Equivalently, primes congruent to +/1 modulo 9.
Membership or nonmembership of the prime p in this sequence and sequence A002144 (primes congruent to 1 mod 4; equivalently, primes p such that the smallest extension of F_p containing the square roots of unity contains the 4th roots of unity) appear to determine the behavior of amicable pairs on the elliptic curve y^2 = x^3 + p (Silverman, Stange 2009). (End)
Primes in A056020.  Reinhard Zumkeller, Jan 07 2012
Primes congruent to (1,17) mod 18.  Vincenzo Librandi, Aug 14 2012


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Emma Lehmer, On special primes, Pac. J. Math., 118 (1985), 471478.
J. H. Silverman and K. E. Stange. Amicable pairs and aliquot cycles for elliptic curves, arxiv:0912.1831 [math.NT], 2009.


MATHEMATICA

Union[Join[Select[Range[1, 3000, 18], PrimeQ], Select[Range[1, 3000, 18], PrimeQ]]] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
Select[Prime[Range[4000]], MemberQ[{1, 17}, Mod[#, 18]]&] (* Vincenzo Librandi, Aug 14 2012 *)


PROG

(Haskell)
a129805 n = a129805_list !! (n1)
a129805_list = [x  x < a056020_list, a010051 x == 1]
 Reinhard Zumkeller, Jan 07 2012
(MAGMA) [ p: p in PrimesUpTo(1300)  p mod 18 in {1, 17} ]; // Vincenzo Librandi, Aug 14 2012


CROSSREFS

Cf. A000040, A010051.
Cf. A129806, A129807.
Sequence in context: A144214 A191043 A306510 * A289492 A262286 A108024
Adjacent sequences: A129802 A129803 A129804 * A129806 A129807 A129808


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 22 2007


STATUS

approved



