login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular numbers that are the sum of three consecutive triangular numbers.
19

%I #36 Oct 31 2024 13:17:23

%S 10,136,1891,26335,366796,5108806,71156485,991081981,13803991246,

%T 192264795460,2677903145191,37298379237211,519499406175760,

%U 7235693307223426,100780206894952201,1403687203222107385,19550840638214551186,272308081731781609216

%N Triangular numbers that are the sum of three consecutive triangular numbers.

%C Indices m: 4, 16, 61, 229, 856, 3196, 11929, with recurrence m(i) = 5(m(i-1) - m(i-2)) + m(i-3) (see A133161).

%C If first term is omitted, same sequence as A128862. - _R. J. Mathar_, Jun 13 2008

%H Colin Barker, <a href="/A129803/b129803.txt">Table of n, a(n) for n = 1..850</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15, -15, 1).

%F a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k).

%F From _Richard Choulet_, Oct 06 2007: (Start)

%F a(n+2) = 14*a(n+1) - a(n) - 3.

%F a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15).

%F G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)

%F a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - _Colin Barker_, Mar 05 2016

%e With tr(k) = k(k+1)/2 = A000217(k):

%e 10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6,

%e 136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55,

%e 1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666,

%e 26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911,

%e 366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760.

%t LinearRecurrence[{15,-15,1},{10,136,1891},20] (* _Harvey P. Dale_, Oct 31 2024 *)

%o (PARI) Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ _Michel Marcus_, Sep 16 2015

%Y Cf. A000217, A128862, A133161.

%K nonn,easy

%O 1,1

%A _Zak Seidov_, May 18 2007