login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003875
Degrees of irreducible representations of symmetric group S_11.
8
1, 1, 10, 10, 44, 44, 45, 45, 110, 110, 120, 120, 132, 132, 165, 165, 210, 210, 231, 231, 252, 330, 330, 385, 385, 462, 462, 550, 550, 594, 594, 660, 660, 693, 693, 825, 825, 924, 924, 990, 990, 990, 990, 1100, 1100, 1155, 1155, 1188, 1232, 1232, 1320, 1320, 1540, 1540, 2310, 2310
OFFSET
1,3
COMMENTS
All 56 terms of this finite sequence are shown.
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[T[11]] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
PROG
(Magma) t1 := CharacterTable(SymmetricGroup(11)); [Degree(t1[i]) : i in [1 .. #t1]];
(GAP) A003875 := List(Irr(CharacterTable("S11")), chi->chi[1]);; Sort(A003875); # Eric M. Schmidt, Jul 18 2012
CROSSREFS
Row n=11 of A060240.
Sequence in context: A109051 A371958 A201027 * A341836 A328530 A238017
KEYWORD
nonn,fini,full
STATUS
approved