login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238002 Count with multiplicity of prime factors of n in (n - 1)!. 2
0, 0, 1, 0, 4, 0, 4, 2, 8, 0, 12, 0, 11, 7, 11, 0, 21, 0, 19, 10, 19, 0, 28, 4, 23, 10, 26, 0, 44, 0, 26, 16, 32, 11, 47, 0, 35, 19, 43, 0, 61, 0, 42, 28, 42, 0, 63, 6, 56, 24, 50, 0, 72, 16, 58, 28, 54, 0, 94, 0, 57, 37, 57, 18, 98, 0, 67, 33, 91, 0, 99, 0, 71, 50, 74, 17, 113, 0, 92 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 2..10000

FORMULA

a(p) = 0 for p prime.

a(2n) > a(2n + 1) for all n > 2.

EXAMPLE

a(4) = 1 because 3! = 6 = 2 * 3, which has one prime factor (2) in common with 4.

a(5) = 0 because gcd(4!, 5) = 1.

a(6) = 4 because 5! = 120 = 2^3 * 3 * 5, which has four factors (2 thrice and 3 once) in common with 6.

MAPLE

with(numtheory):

a:= n-> add(add(`if`(i[1] in factorset(n), i[2], 0),

        i=ifactors(j)[2]), j=1..n-1):

seq(a(n), n=2..100);  # Alois P. Heinz, Mar 17 2014

MATHEMATICA

cmpf[n_]:=Count[Flatten[Table[#[[1]], {#[[2]]}]&/@FactorInteger[ (n-1)!]], _?( MemberQ[Transpose[FactorInteger[n]][[1]], #]&)]; Array[cmpf, 80] (* Harvey P. Dale, Jan 23 2016 *)

PROG

(Sage)

m=100 # change n for more terms

[sum(valuation(factorial(n-1), p) for p in prime_divisors(n) if p in prime_divisors(factorial(n-1))) for n in [2..m]] # Tom Edgar, Mar 14 2014

(PARI) a(n) = {nm = (n-1)!; fn = factor(n); sum (i=1, #fn~, valuation(nm, fn[i, 1])); } \\ Michel Marcus, Mar 15 2014

CROSSREFS

Cf. A061006, A181569, A226198, A022559.

Sequence in context: A160214 A081087 A135031 * A016680 A062524 A152856

Adjacent sequences:  A237999 A238000 A238001 * A238003 A238004 A238005

KEYWORD

nonn,easy

AUTHOR

Alonso del Arte, Feb 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 04:40 EDT 2019. Contains 325189 sequences. (Running on oeis4.)