OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(3*k+2,n-k) * binomial(4*k,k)/(3*k+1).
D-finite with recurrence 3*n*(5589*n-14914)*(3*n-1)*(3*n+1)*a(n) +(150903*n^4 -5939762*n^3 +21653157*n^2 -22049842*n +6856944)*a(n-1) +6*(-2312427*n^4 +15333754*n^3 -28367401*n^2 +6040114*n +14892656)*a(n-2) +24*(-3942141*n^4 +46541449*n^3 -199851671*n^2 +367766019*n -243569600)*a(n-3) -32*(n-5)*(8043984*n^3 -85808428*n^2 +305023231*n -361082892)*a(n-4) -384*(n-5)*(n-6)*(885234*n^2 -6808468*n +12951185)*a(n-5) -1536*(n-6)*(n-7)*(144699*n^2 -1203919*n +2337211)*a(n-6) -2048*(n-6)*(n-7)*(n-8)*(27819*n-74186)*a(n-7)=0. - R. J. Mathar, Dec 04 2023
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*k+2, n-k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 25 2023
STATUS
approved