login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075538
a(1)=1, a(2)=2, then use "merge and minus": a(n)=merge(a(1),...,a(n-1))-a(1)-...-a(n-1).
1
1, 2, 9, 117, 128988, 129116999871, 129117128987999999870883, 129117128988129116999870999999999999870882871012, 129117128988129116999871129117128987999999870882999999999999999999999999870882871011870883000129
OFFSET
1,2
COMMENTS
A rapidly growing sequence.
FORMULA
a(1)=1, a(2)=2, a(n)=merge(a(1), ..., a(n-1))-a(1)-...-a(n-1).
EXAMPLE
a(3)=9 because a(1)=1,a(2)=2 and a(3)=merge(a(1),a(2))-a(1)-a(2)=12-1-2=9; then a(4)=117 because a(4)=merge(a(1),a(2),a(3))-a(1)-a(2)-a(3)=129-1-2-9=117.
MATHEMATICA
se={1, 2}; a=1; b=2; me=ToString[a]<>ToString[b]; su=a+b; Do[ab=ToExpression[me]-su; se=Append[se, ab]; su=su+ab; me=ToString[me]<>ToString[ab], {i, 10}]; se
CROSSREFS
Cf. A075537.
Sequence in context: A039718 A307249 A201381 * A067965 A237999 A194017
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 20 2002
STATUS
approved