login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(2)=2, then use "merge and minus": a(n)=merge(a(1),...,a(n-1))-a(1)-...-a(n-1).
1

%I #9 Jan 09 2024 16:15:16

%S 1,2,9,117,128988,129116999871,129117128987999999870883,

%T 129117128988129116999870999999999999870882871012,

%U 129117128988129116999871129117128987999999870882999999999999999999999999870882871011870883000129

%N a(1)=1, a(2)=2, then use "merge and minus": a(n)=merge(a(1),...,a(n-1))-a(1)-...-a(n-1).

%C A rapidly growing sequence.

%F a(1)=1, a(2)=2, a(n)=merge(a(1), ..., a(n-1))-a(1)-...-a(n-1).

%e a(3)=9 because a(1)=1,a(2)=2 and a(3)=merge(a(1),a(2))-a(1)-a(2)=12-1-2=9; then a(4)=117 because a(4)=merge(a(1),a(2),a(3))-a(1)-a(2)-a(3)=129-1-2-9=117.

%t se={1, 2}; a=1; b=2; me=ToString[a]<>ToString[b]; su=a+b; Do[ab=ToExpression[me]-su; se=Append[se, ab]; su=su+ab; me=ToString[me]<>ToString[ab], {i, 10}]; se

%Y Cf. A075537.

%K nonn

%O 1,2

%A _Zak Seidov_, Sep 20 2002