|
|
A238012
|
|
Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals.
|
|
12
|
|
|
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,18
|
|
COMMENTS
|
In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
|
|
LINKS
|
|
|
FORMULA
|
A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
|
|
EXAMPLE
|
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, ...
0, 0, 1, 4, 7, 12, ...
0, 0, 2, 48, 310, 1240, ...
0, 0, 9, 3042, 109809, 1655004, ...
0, 0, 119, 1067474, 370702459, 32796849930, ...
|
|
MATHEMATICA
|
A[0, 0] = 0;
A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
|
|
CROSSREFS
|
Columns k=0-10 give: A000004, A063524, A237999, A239162, A239163, A239164, A239165, A239166, A239167, A239168, A239169.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|