login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238012 Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0
(list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,18
COMMENTS
In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
LINKS
FORMULA
A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, ...
0, 0, 1, 4, 7, 12, ...
0, 0, 2, 48, 310, 1240, ...
0, 0, 9, 3042, 109809, 1655004, ...
0, 0, 119, 1067474, 370702459, 32796849930, ...
MATHEMATICA
A[0, 0] = 0;
A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
CROSSREFS
Rows n=0-2 give: A000004, A057427, A074148(k-1) for k>1.
Main diagonal gives A238001.
Cf. A238010.
Sequence in context: A056582 A167891 A105087 * A324802 A320647 A028572
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 16 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 20:35 EDT 2024. Contains 376002 sequences. (Running on oeis4.)