The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238012 Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,18 COMMENTS In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015 LINKS Alois P. Heinz, Antidiagonals n = 0..43, flattened A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011. FORMULA A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j). EXAMPLE Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, ... 0, 1, 1, 1, 1, 1, ... 0, 0, 1, 4, 7, 12, ... 0, 0, 2, 48, 310, 1240, ... 0, 0, 9, 3042, 109809, 1655004, ... 0, 0, 119, 1067474, 370702459, 32796849930, ... MATHEMATICA A[0, 0] = 0; A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A000004, A063524, A237999, A239162, A239163, A239164, A239165, A239166, A239167, A239168, A239169. Rows n=0-2 give: A000004, A057427, A074148(k-1) for k>1. Main diagonal gives A238001. Cf. A238010. Sequence in context: A056582 A167891 A105087 * A324802 A320647 A028572 Adjacent sequences: A238009 A238010 A238011 * A238013 A238014 A238015 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Feb 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:35 EDT 2024. Contains 376002 sequences. (Running on oeis4.)