login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238012 Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,18

COMMENTS

In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

LINKS

Alois P. Heinz, Antidiagonals n = 0..43, flattened

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011.

FORMULA

A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).

EXAMPLE

Square array A(n,k) begins:

  0, 0,   0,       0,         0,           0, ...

  0, 1,   1,       1,         1,           1, ...

  0, 0,   1,       4,         7,          12, ...

  0, 0,   2,      48,       310,        1240, ...

  0, 0,   9,    3042,    109809,     1655004, ...

  0, 0, 119, 1067474, 370702459, 32796849930, ...

MATHEMATICA

A[0, 0] = 0;

A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}];

Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-Fran├žois Alcover, Aug 18 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000004, A063524, A237999, A239162, A239163, A239164, A239165, A239166, A239167, A239168, A239169.

Rows n=0-2 give: A000004, A057427, A074148(k-1) for k>1.

Main diagonal gives A238001.

Cf. A238010.

Sequence in context: A056582 A167891 A105087 * A324802 A320647 A028572

Adjacent sequences:  A238009 A238010 A238011 * A238013 A238014 A238015

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Feb 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)