login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239162 Number of partitions of 3^n into parts that are at most n with at least one part of each size. 2
0, 1, 4, 48, 3042, 1067474, 2215932130, 29012104252380, 2526293243761311036, 1525710603023191548743988, 6600334932211428773703751221040, 209705652574790086852527310591449309624, 49907101066058865036206450041083799915221352487 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..49

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011.

FORMULA

a(n) = [x^(3^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).

a(n) ~ 3^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

EXAMPLE

a(2) = 4: 22221, 222111, 2211111, 21111111.

MATHEMATICA

maxExponent = 30; a[0] = 0; a[1] = 1;

a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[3^n - n(n+1)/2 + 1] // Round]; Table[an = a[n];

Print[n, " ", an]; an, {n, 0, 12}] (* Jean-Fran├žois Alcover, Nov 15 2018 *)

CROSSREFS

Column k=3 of A238012.

Sequence in context: A197927 A100568 A112693 * A136384 A123373 A264265

Adjacent sequences:  A239159 A239160 A239161 * A239163 A239164 A239165

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 22:27 EDT 2022. Contains 354899 sequences. (Running on oeis4.)