login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239165 Number of partitions of 6^n into parts that are at most n with at least one part of each size. 2
0, 1, 17, 3781, 14942231, 1264608203048, 2555847904495965819, 132574244496779071303074376, 185560862224740635595130202984468935, 7271076505438083132065943012753686950455454055, 8205115354631567886718289443554629632451344416164686337673 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..37

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])

FORMULA

a(n) = [x^(6^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).

a(n) ~ 6^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

MATHEMATICA

maxExponent = 50; a[0] = 0; a[1] = 1;

a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[6^n-n(n+1)/2+1] // Round];

Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 10}] (* Jean-Fran├žois Alcover, Nov 15 2018 *)

CROSSREFS

Column k=6 of A238012.

Sequence in context: A125000 A228195 A032909 * A329168 A194015 A015058

Adjacent sequences:  A239162 A239163 A239164 * A239166 A239167 A239168

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 05:20 EDT 2022. Contains 356110 sequences. (Running on oeis4.)