login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228195
Primes with the property that the sum of the cubes of their digits plus the prime equals another prime squared.
2
17, 2897, 11471, 15527, 19949, 26693, 26783, 72467, 78041, 142757, 159209, 216791, 350747, 366917, 672593, 725891, 775007, 1187939, 1529153, 1659737, 2024093, 2035097, 2035349, 2105231, 2127761, 2598929, 2645933, 2917799, 3322439, 3497993, 3970643, 4042697, 4067513, 4280051, 4329257, 4464017, 5839397
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
17 is a term since (1^3 + 7^3) + 17 = 19^2.
2897 is a term since (2^3 + 8^3 + 9^3 + 7^3) + 2897 = 67^2.
11471 is a term since (1^3 + 1^3 + 4^3 + 7^3 + 1^3) + 11471 = 109^2.
MATHEMATICA
Select[Prime[Range[403000]], PrimeQ[Sqrt[#+Total[IntegerDigits[#]^3]]]&] (* Harvey P. Dale, Oct 15 2023 *)
PROG
(PARI) is(n)=my(d=digits(n), k); issquare(sum(i=1, #d, d[i]^3)+n, &k) && isprime(k) && isprime(n) \\ Charles R Greathouse IV, Jun 16 2014
(PARI) searchdigit(n)=my(v=List(), N1=10^(n-1), N2=10^n, t=729*n, d, k, p2); forprime(p=sqrtint(N1)+1, sqrtint(N2+t), p2=p^2; forprime(q=max(N1, p2-t+2), min(N2, p2-2), d=digits(q); if(sum(i=1, #d, d[i]^3)+q==p2, listput(v, q)))); Vec(v)
v=[]; for(n=1, 9, v=concat(v, searchdigit(n))); v \\ Charles R Greathouse IV, Jun 16 2014
CROSSREFS
Sequence in context: A198594 A138199 A125000 * A032909 A367536 A239165
KEYWORD
nonn,base,less
AUTHOR
Will Gosnell, Aug 15 2013
EXTENSIONS
a(10)-a(37) from Charles R Greathouse IV, Jun 16 2014
STATUS
approved