login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228193
G.f.: exp( Sum_{n>=1} A001850(n^2)*x^n/n ), where A001850 forms the central Delannoy numbers.
1
1, 3, 165, 488007, 63015285321, 313849204040245803, 57549960579131376060801997, 379048169979935686476204047966170767, 88353684521579654155696728418892273040483607185, 721871639878336367921338532273490438662977816273231098545619
OFFSET
0,2
FORMULA
Logarithmic derivative yields A228192.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 165*x^2 + 488007*x^3 + 63015285321*x^4 +...
where the logarithm of the g.f. begins:
log(A(x)) = 3*x + 321*x^2/2 + 1462563*x^3/3 + 252055236609*x^4/4 +...+ A001850(n^2)*x^n/n +...
PROG
(PARI) {A228192(n)=sum(k=0, n^2, binomial(n^2, k)*binomial(n^2+k, k))}
{a(n)=polcoeff(exp(sum(k=1, n+1, A228192(k)*x^k/k) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A185242 A012806 A020545 * A297820 A297990 A298843
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 15 2013
STATUS
approved