login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056582
Highest common factor (or GCD) of n^n and hyperfactorial(n-1), i.e., gcd(n^n, product(k^k) for k < n).
3
1, 1, 4, 1, 1728, 1, 65536, 19683, 3200000, 1, 8916100448256, 1, 13492928512, 437893890380859375, 18446744073709551616, 1, 39346408075296537575424, 1, 104857600000000000000000000
OFFSET
2,3
COMMENTS
Sequence could be defined as: a(2) = 1, a(4) = 4, a(8) = 65536, a(9) = 19683; if p an odd prime: a(p) = 1 and a(2p) = (4p)^p; otherwise if n > 1: a(n) = n^n.
LINKS
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
FORMULA
a(n) = GCD(A000312(n), A002109(n-1)).
Except for n = 4, a(n) = A056583(n)^A056584(n) = A056583(n)^(n^2/A056583(n)) = (n^2/A056584(n))^A056584(n).
EXAMPLE
a(6) = gcd(46656, 86400000) = 1728.
PROG
(Python)
from gmpy2 import gcd
A056582_list, n = [], 1
for i in range(2, 201):
m = i**i
A056582_list.append(int(gcd(n, m)))
n *= m # Chai Wah Wu, Aug 21 2015
CROSSREFS
Sequence in context: A038019 A164804 A036115 * A167891 A105087 A238012
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jul 03 2000
STATUS
approved