The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056582 Highest common factor (or GCD) of n^n and hyperfactorial(n-1), i.e., gcd(n^n, product(k^k) for k < n). 3
 1, 1, 4, 1, 1728, 1, 65536, 19683, 3200000, 1, 8916100448256, 1, 13492928512, 437893890380859375, 18446744073709551616, 1, 39346408075296537575424, 1, 104857600000000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Sequence could be defined as: a(2) = 1, a(4) = 4, a(8) = 65536, a(9) = 19683; if p an odd prime: a(p) = 1 and a(2p) = (4p)^p; otherwise if n > 1: a(n) = n^n. LINKS Chai Wah Wu, Table of n, a(n) for n = 2..200 Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012. FORMULA a(n) = GCD(A000312(n), A002109(n-1)). Except for n = 4, a(n) = A056583(n)^A056584(n) = A056583(n)^(n^2/A056583(n)) = (n^2/A056584(n))^A056584(n). EXAMPLE a(6) = gcd(46656, 86400000) = 1728. PROG (Python) from gmpy2 import gcd A056582_list, n = [], 1 for i in range(2, 201): m = i**i A056582_list.append(int(gcd(n, m))) n *= m # Chai Wah Wu, Aug 21 2015 CROSSREFS Sequence in context: A038019 A164804 A036115 * A167891 A105087 A238012 Adjacent sequences: A056579 A056580 A056581 * A056583 A056584 A056585 KEYWORD nonn,easy AUTHOR Henry Bottomley, Jul 03 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 23:11 EDT 2024. Contains 373488 sequences. (Running on oeis4.)