login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056585 Eighth power of Fibonacci numbers A000045. 4
0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

REFERENCES

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..107

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.

A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.

J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (34,714,-4641,-12376,12376,4641,-714,-34,1).

FORMULA

a(n) = F(n)^8, F(n)=A000045(n).

G.f.: x*p(8, x)/q(8, x) with p(8, x) := sum_{m=0..7} A056588(7, m)*x^m = (1+x)*(1 - 34*x - 458*x^2 + 2242*x^3 - 458*x^4 - 34*x^5 + x^6) and q(8, x) := sum_{m=0..9} A055870(9, m)*x^m = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)*(1 + 18*x + x^2)*(1 - 47*x + x^2) (denominator factorization deduced from Riordan result).

Recursion (cf. Knuth's exercise): sum_{m=0..9} A055870(9, m)*a(n-m) = 0, n >= 9; inputs: a(n), n=0..8. a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).

a(n+1) = 8*F(n)^2*F(n+1)^2*[F(n)^4+F(n+1)^4+4*F(n)^2*F(n+1)^2+3*F(n)*F(n+1)*F(n+2)]-[F(n)^8+F(n+2)^8]+2*[2*F(n+1)^2-(-1)^n]^4 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^8, for n>=0 (This is Theorem 2.2 (vii) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

MATHEMATICA

lst={}; Do[f=Fibonacci[n]; AppendTo[lst, f^8], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)

Fibonacci[Range[0, 20]]^8 (* Harvey P. Dale, Jul 03 2017 *)

PROG

(Magma) [Fibonacci(n)^8: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011

(PARI) a(n)=fibonacci(n)^8 \\ Charles R Greathouse IV, Jun 30 2015

CROSSREFS

Cf. A000045, A007598, A056570, A056571, A056572, A056573, A056574, A056588, A055870.

Sequence in context: A050755 A046457 A179645 * A321818 A231307 A206129

Adjacent sequences: A056582 A056583 A056584 * A056586 A056587 A056588

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jul 10 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 08:51 EST 2022. Contains 358585 sequences. (Running on oeis4.)