login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056573
Sixth power of Fibonacci numbers A000045.
8
0, 1, 1, 64, 729, 15625, 262144, 4826809, 85766121, 1544804416, 27680640625, 496981290961, 8916100448256, 160005726539569, 2871098559212689, 51520374361000000, 924491486192068809, 16589354847268067929
OFFSET
0,4
COMMENTS
A divisibility sequence; that is, if n divides m, then a(n) divides a(m).
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
LINKS
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
FORMULA
a(n) = F(n)^6, where F(n) = A000045(n).
G.f.: x*p(6, x)/q(6, x) with p(6, x) := sum_{m=0..5} A056588(5, m)*x^m = (1-x)*(1 - 11*x - 64*x^2 - 11*x^3 + x^4) and q(6, x) := sum_{m=0..7} A055870(7, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..7} A055870(7, m)*a(n-m) = 0, n >= 7; inputs: a(n), n=0..6. a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7).
From Gary Detlefs, Jan 07 2013: (Start)
a(n) = (F(3*n)^2 - (-1)^n*6*F(n)*F(3*n) + 9*F(n)^2)/25.
a(n) = (10*F(n)^3*F(3*n) - F(3*n)^2 + 9*F(n)^2)/25. (End)
a(n+1) = 2*[2*F(n+1)^2-(-1)^n]^3+3*F(n)^2*F(n+1)^2*F(n+2)^2-[F(n)^6+F(n+2)^6] = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^6, for n (this is Theorem 2.2 (vi) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015
MAPLE
with(combinat): A056573:=n->fibonacci(n)^6: seq(A056573(n), n=0..30); # Wesley Ivan Hurt, Jun 29 2015
MATHEMATICA
f[n_]:=Fibonacci[n]^6; lst={}; Do[AppendTo[lst, f[n]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Fibonacci[Range[0, 20]]^6 (* Harvey P. Dale, Sep 21 2024 *)
PROG
(Magma) [Fibonacci(n)^6: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011
(PARI) a(n)=fibonacci(n)^6 \\ Charles R Greathouse IV, Jun 29 2015
CROSSREFS
Sixth row of array A103323.
Sequence in context: A046455 A092758 A030516 * A321817 A231305 A357391
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved