login
A321817
a(n) = Sum_{d|n, n/d odd} d^6 for n > 0.
3
1, 64, 730, 4096, 15626, 46720, 117650, 262144, 532171, 1000064, 1771562, 2990080, 4826810, 7529600, 11406980, 16777216, 24137570, 34058944, 47045882, 64004096, 85884500, 113379968, 148035890, 191365120, 244156251, 308915840, 387952660
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} k^6*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(6*e) and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 127*zeta(7)/896 = 0.142924... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-6)*(1-1/2^s). - Amiram Eldar, Jan 08 2023
MATHEMATICA
a[n_] := DivisorSum[n, #^6 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 02 2022 *)
PROG
(PARI) apply( A321817(n)=sumdiv(n, d, if(bittest(n\d, 0), d^6)), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013665.
Sequence in context: A092758 A030516 A056573 * A231305 A357391 A108538
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved