login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028572
Expansion of theta_3(z)*theta_3(2z) + theta_2(z)*theta_2(2z) in powers of q^(1/4).
1
1, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 8, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 4, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 6, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 12, 2, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of phi(x^4) * phi(x^8) + 4 * x^3 * psi(x^8) * psi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 pi i t). - Michael Somos, Mar 23 2012
G.f.: Sum_{n,m} x^(3*(n^2 + m^2) + 2*n*m). - Michael Somos, Nov 20 2006
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A033715(n). a(8*n + 3) = 4 * A033761(n). - Michael Somos, Mar 23 2012
EXAMPLE
1 + 4*x^3 + 2*x^4 + 2*x^8 + 4*x^11 + 4*x^12 + 2*x^16 + 4*x^19 + 4*x^24 + ...
1 + 4*q^(3/4) +2*q +2*q^2 +4*q^(11/4) +4*q^3 +2*q^4 + 4*q^(19/4) +4*q^6 + ...
MATHEMATICA
terms = 105; max = Sqrt[terms] // Ceiling; s = Sum[x^(3*(n^2 + m^2) + 2*n*m), {n, -max, max}, {m, -max, max}]; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Dec 03 2015, using 2nd g.f. *)
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep( [3, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Nov 20 2006 */
(PARI) {a(n) = if( n<1, n==0, if( n%4==1 || n%4==2, 0, 2 * sumdiv( n, d, kronecker( -2, d))))} /* Michael Somos, Mar 23 2012 */
CROSSREFS
Sequence in context: A238012 A324802 A320647 * A107492 A159257 A258997
KEYWORD
nonn
STATUS
approved