Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 12 2021 22:24:41
%S 1,0,0,4,2,0,0,0,2,0,0,4,4,0,0,0,2,0,0,4,0,0,0,0,4,0,0,8,0,0,0,0,2,0,
%T 0,0,6,0,0,0,0,0,0,4,4,0,0,0,4,0,0,8,0,0,0,0,0,0,0,4,0,0,0,0,2,0,0,4,
%U 4,0,0,0,6,0,0,4,4,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,12,2,0,0,0,0
%N Expansion of theta_3(z)*theta_3(2z) + theta_2(z)*theta_2(2z) in powers of q^(1/4).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of phi(x^4) * phi(x^8) + 4 * x^3 * psi(x^8) * psi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 pi i t). - _Michael Somos_, Mar 23 2012
%F G.f.: Sum_{n,m} x^(3*(n^2 + m^2) + 2*n*m). - _Michael Somos_, Nov 20 2006
%F a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A033715(n). a(8*n + 3) = 4 * A033761(n). - _Michael Somos_, Mar 23 2012
%e 1 + 4*x^3 + 2*x^4 + 2*x^8 + 4*x^11 + 4*x^12 + 2*x^16 + 4*x^19 + 4*x^24 + ...
%e 1 + 4*q^(3/4) +2*q +2*q^2 +4*q^(11/4) +4*q^3 +2*q^4 + 4*q^(19/4) +4*q^6 + ...
%t terms = 105; max = Sqrt[terms] // Ceiling; s = Sum[x^(3*(n^2 + m^2) + 2*n*m), {n, -max, max}, {m, -max, max}]; CoefficientList[s, x][[1 ;; terms]] (* _Jean-François Alcover_, Dec 03 2015, using 2nd g.f. *)
%o (PARI) {a(n) = if( n<1, n==0, qfrep( [3, 1; 1, 3], n)[n] * 2)} /* _Michael Somos_, Nov 20 2006 */
%o (PARI) {a(n) = if( n<1, n==0, if( n%4==1 || n%4==2, 0, 2 * sumdiv( n, d, kronecker( -2, d))))} /* _Michael Somos_, Mar 23 2012 */
%Y Cf. A033715, A033761.
%K nonn
%O 0,4
%A _N. J. A. Sloane_