login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028570
Numbers k such that k*(k + 9) is a palindrome.
2
0, 2, 12, 44, 137, 157, 167, 248, 258, 1639, 1664, 1694, 5392, 15904, 16997, 160187, 487619, 1547147, 14674184, 14790532, 15019614, 15336644, 25234083, 26132578, 26211438, 26216753, 48675319, 49407017, 52030352, 54072524, 151698472, 164399727, 497665874
OFFSET
1,2
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..42
Erich Friedman, What's Special About This Number? (See entries 258, 1664.)
MATHEMATICA
Select[Range[0, 9999], PalindromeQ[#^2 + 9#] &] (* Alonso del Arte, Nov 10 2019 *)
PROG
(Scala) def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
(0 to 9999).filter((n: Int) => palQ(n * n + 9 * n)) // Alonso del Arte, Nov 10 2019
(Magma) f:=func<n| Intseq(n) eq Reverse(Intseq(n))>; [k:k in [0..2*10^7]| f(k*(k+9))]; // Marius A. Burtea, Nov 11 2019
(Python)
from itertools import count, islice
def ispal(n): s = str(n); return s == s[::-1]
def agen():
for k in count(0):
if ispal(k*(k+9)):
yield k
print(list(islice(agen(), 18))) # Michael S. Branicky, Jan 25 2022
CROSSREFS
Sequence in context: A203278 A013704 A025495 * A009074 A371487 A356868
KEYWORD
nonn,base
EXTENSIONS
a(27) and beyond from Michael S. Branicky, Jan 25 2022
STATUS
approved