login
A238009
Number T(n,k) of equivalence classes of ways of placing k 2 X 2 tiles in an n X 3 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=2, 0<=k<=floor(n/2), read by rows.
23
1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 1, 3, 8, 3, 1, 3, 12, 8, 1, 4, 18, 22, 6, 1, 4, 24, 40, 22, 1, 5, 32, 73, 66, 10, 1, 5, 40, 112, 146, 48, 1, 6, 50, 172, 292, 174, 20, 1, 6, 60, 240, 516, 448, 116, 1, 7, 72, 335, 860, 1020, 464, 36, 1, 7, 84, 440, 1340, 2016, 1360, 256
OFFSET
2,6
LINKS
Christopher Hunt Gribble and Andrew Howroyd, Rows n=2..60 of T(n,k) flattened (Rows n=2..20 from Christopher Hunt Gribble)
Christopher Hunt Gribble, C++ program
EXAMPLE
The first 19 rows of T(n,k) are:
n\k 0 1 2 3 4 5 6 7 8 9 10
2 1 1
3 1 1
4 1 2 2
5 1 2 4
6 1 3 8 3
7 1 3 12 8
8 1 4 18 22 6
9 1 4 24 40 22
10 1 5 32 73 66 10
11 1 5 40 112 146 48
12 1 6 50 172 292 174 20
13 1 6 60 240 516 448 116
14 1 7 72 335 860 1020 464 36
15 1 7 84 440 1340 2016 1360 256
16 1 8 98 578 2010 3716 3400 1168 72
17 1 8 112 728 2890 6336 7432 3840 584
18 1 9 128 917 4046 10326 14864 10600 2920 136
19 1 9 144 1120 5502 16016 27536 25344 10600 1280
20 1 10 162 1368 7336 24066 48188 54992 31800 7080 272
PROG
(C++) See Gribble link.
(PARI)
T(n, k)={(2^k*binomial(n-1*k, k) + ((k%2==0)+(n%2==0||k%2==0)+(k==0)) * 2^((k+1)\2)*binomial((n-1*k-(k%2)-(n%2))/2, k\2))/4}
for(n=2, 20, for(k=0, floor(n/2), print1(T(n, k), ", ")); print) \\ Andrew Howroyd, May 29 2017
KEYWORD
tabf,nonn
AUTHOR
EXTENSIONS
Corrected C++ program and xrefs added by Christopher Hunt Gribble, Apr 25 2015
STATUS
approved