login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238008
Numbers n such that n*(n+3)*(n+6) is a triangular number.
0
-5, -3, 0, 1, 10, 12, 22, 159, 639, 651, 2629
OFFSET
1,1
COMMENTS
From Joerg Arndt, Feb 27 2014: (Start)
Using x for n, we are looking for integral points on the elliptic curve y*(y+1) == 2 * x*(x+3)*(x+6).
Substituting x --> x/2 and y --> y/2 and dividing the equation by 4 we obtain the Weierstrass form y^2 + 2*y == x^3 + 18*x^2 + 72*x.
Running the Sage program gives the following list of points (x : y : 1):
[(-10 : 8 : 1), (-7 : 5 : 1), (-6 : 0 : 1), (0 : 0 : 1), (2 : 14 : 1), (20 : 128 : 1), (24 : 160 : 1), (29 : 203 : 1), (44 : 350 : 1), (318 : 5830 : 1), (1278 : 46008 : 1), (1302 : 47304 : 1), (5258 : 381920 : 1)].
Dividing all x by 2 gives
[-5, -7/2, -3, 0, 1, 10, 12, 29/2, 22, 159, 639, 651, 2629].
The integral values are the terms of this sequence.
(End)
EXAMPLE
1 is in the sequence because 1*4*7=28 is a triangular number.
PROG
(PARI)
istriang(n)=issquare(8*n+1);
isok(n)=istriang( n*(n+3)*(n+6) );
for (n=-10^6, 10^6, if ( isok(n), print1(n, ", ") ) );
\\ Joerg Arndt, Feb 17 2014
(Sage)
# for the curve y^2 + b1*x*y + b3*y = x^3 + b2*x^2 + b4*x + b5, use
# EllipticCurve([b1, b2, b3, b4, b5])
# we have y^2 + 2*y == x^3 + 18*x^2 + 72*x + 0, so need
E=EllipticCurve([0, 18, 2, 72, 0])
E.integral_points()
## Joerg Arndt, Feb 27 2014
(PARI) isok(n) = ispolygonal((n-1)*n*(n+1), 3); \\ Michel Marcus, Mar 05 2014
CROSSREFS
KEYWORD
sign,fini,full
AUTHOR
Alex Ratushnyak, Feb 16 2014
EXTENSIONS
Added the negative terms, Joerg Arndt, Feb 27 2014
STATUS
approved