login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375837
Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.
2
1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
OFFSET
0,9
LINKS
Sean A. Irvine, Java program (github)
FORMULA
Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n,i_(k-1)) * Stirling1(i_(k-1),i_(k-2)) * ... * Stirling1(i_3,i_2) * Stirling1(i_2,i_1)))...)), where 2 <= k <= n.
EXAMPLE
Triangle T(n,k) begins:
n\k | 0 1 2 3 4 5 6 7 ...
-----+-----------------------------------------
0 | 1;
1 | 0, 1;
2 | 0, 1, 1;
3 | 0, 1, 5, 3;
4 | 0, 1, 23, 41, 18;
5 | 0, 1, 119, 455, 515, 180;
6 | 0, 1, 719, 5139, 10985, 9255, 2700;
7 | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[k < 0 || k > n, 0, If[k == 1 || Union@{n, k} == {0}, 1, Sum[b[v, k - 1, 1]*Abs[StirlingS1[n, v]], {v, k, n - t}]]];
T[n_, k_] := b[n, k, 0];
Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A000007 (column k=0), A057427 (column k=1), A006472 (diagonal), A375838 (row sums).
Sequence in context: A322758 A077602 A238008 * A375772 A193547 A144481
KEYWORD
nonn,tabl
AUTHOR
Rajesh Kumar Mohapatra, Ranjan Kumar Dhani, and Subhashree Sahoo, Aug 31 2024
STATUS
approved