login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375836
Number of chains in the poset of permutations of [n].
3
1, 1, 3, 17, 165, 2539, 57597, 1813797, 75733683, 4048845673, 269701306809, 21901093760303, 2129681860984785, 244316156443454237, 32650648748310672739, 5028367353617766838085, 884047390780977994754809, 175979907431515249448486007, 39376198947363790655257792497
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} A375835(n,k).
EXAMPLE
Consider the set S = {1, 2, 3}. The a(3) = 6 + 8 + 3 = 17 in the poset of permutations of {1,2,3}:
|{(1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132)}| = 6;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}|=8;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13) < (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*Abs[StirlingS1[n, v]], {v, k, n - t}]]];
a[n_] := Sum[b[n, k, 0], {k, 0, n}]; a /@ Range[0, 20]
CROSSREFS
Row sums of A375835.
Sequence in context: A175607 A052143 A268758 * A069856 A214346 A015083
KEYWORD
nonn
AUTHOR
STATUS
approved