login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069856
E.g.f.: exp(x)/(1+LambertW(x)).
21
1, 0, 3, -17, 169, -2079, 31261, -554483, 11336753, -262517615, 6791005621, -194103134499, 6074821125385, -206616861429575, 7588549099814957, -299320105069298459, 12619329503201165281, -566312032570838608863, 26952678355224681891685
OFFSET
0,3
COMMENTS
Inverse binomial transform of A000312. - Tilman Neumann, Dec 13 2008
The |a(n)| is the number of functions f:{1,2,...,n}->{1,2,...,n} such that the digraph representation of f has no isolated vertices. (* Geoffrey Critzer, Nov 13 2011 *)
REFERENCES
sci.math article 3CBC2B66.224E(AT)olympus.mons
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (-1)^k*k^k/(k!*(n - k)!).
E.g.f. for absolute value of {a(n)}: exp(C(x)-x) where C(x) is the e.g.f for A001865. - Geoffrey Critzer, Nov 13 2011, corrected by Vaclav Kotesovec, Nov 27 2012
abs(a(n)) ~ (exp(1)*n-1/2)/exp(1+exp(-1)) * n^(n-1). - Vaclav Kotesovec, Nov 27 2012
a(n) = (-1)^n * A350212(n,0). - Alois P. Heinz, Dec 19 2021
MATHEMATICA
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Exp[-x]/(1 - t), {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)
Range[0, 18]! CoefficientList[ Series[ Exp[x]/(1 + LambertW[x]), {x, 0, 18}], x] (* Robert G. Wilson v, Nov 28 2012 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(exp(x)/(1+lambertw(x)))) \\ G. C. Greubel, Jun 11 2017
CROSSREFS
Cf. A086331.
Cf. A350212.
Sequence in context: A052143 A268758 A375836 * A214346 A015083 A263460
KEYWORD
sign
AUTHOR
Joe Keane (jgk(AT)jgk.org), May 03 2002
STATUS
approved