Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 20 2021 04:13:12
%S 1,0,3,-17,169,-2079,31261,-554483,11336753,-262517615,6791005621,
%T -194103134499,6074821125385,-206616861429575,7588549099814957,
%U -299320105069298459,12619329503201165281,-566312032570838608863,26952678355224681891685
%N E.g.f.: exp(x)/(1+LambertW(x)).
%C Inverse binomial transform of A000312. - _Tilman Neumann_, Dec 13 2008
%C The |a(n)| is the number of functions f:{1,2,...,n}->{1,2,...,n} such that the digraph representation of f has no isolated vertices. (* _Geoffrey Critzer_, Nov 13 2011 *)
%D sci.math article 3CBC2B66.224E(AT)olympus.mons
%H Vincenzo Librandi, <a href="/A069856/b069856.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = n! * Sum_{k=0..n} (-1)^k*k^k/(k!*(n - k)!).
%F E.g.f. for absolute value of {a(n)}: exp(C(x)-x) where C(x) is the e.g.f for A001865. - _Geoffrey Critzer_, Nov 13 2011, corrected by _Vaclav Kotesovec_, Nov 27 2012
%F abs(a(n)) ~ (exp(1)*n-1/2)/exp(1+exp(-1)) * n^(n-1). - _Vaclav Kotesovec_, Nov 27 2012
%F a(n) = (-1)^n * A350212(n,0). - _Alois P. Heinz_, Dec 19 2021
%t t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Exp[-x]/(1 - t), {x, 0, 20}], x] (* _Geoffrey Critzer_, Nov 13 2011 *)
%t Range[0, 18]! CoefficientList[ Series[ Exp[x]/(1 + LambertW[x]), {x, 0, 18}], x] (* _Robert G. Wilson v_, Nov 28 2012 *)
%o (PARI) x='x+O('x^50); Vec(serlaplace(exp(x)/(1+lambertw(x)))) \\ _G. C. Greubel_, Jun 11 2017
%Y Cf. A086331.
%Y Cf. A350212.
%K sign
%O 0,3
%A Joe Keane (jgk(AT)jgk.org), May 03 2002